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Supplements

Success probability The output of a memory-less sensor can be described
by a conditional probability distribution p(yt|st, nt), which includes determin-
istic behaviour as a special case. Assuming statistically independent noise with
distribution p(nt), the signal transmission properties of the sensor are given by
p(yt|st) =

∑
nt
p(yt|st, nt)p(nt). Ideally, the sensor output should be equal to

the input signal, yt = st, so that p(yt|st) = δyt,st . It is therefore meaningful to
quantify the performance of a sensor by the success probability

Q = p(yt=st), (1)

which is expected to peak at some optimum noise level within the context of
stochastic resonance.

Analytical model In general, the momentary response of a SR-sensor can
depend on the history of internal states of the system, as is the case in integrate-
and-fire-neurons. For simplicity, in the analytical model we only consider memory-
less sensors, which respond to the present input signal st and noise value nt
independently from their former activity states.

We consider a bipolar stochastic sensor in which both the input signal st
and the sensor output yt can only take on the values −1 and +1. The noise
values nt, however, are continuous gaussian random numbers with variance σ2

and mean µ = 0, without any temporal correlations. We further assume that
these two values appear in the input signal with equal probalility, p(st=−1)=
p(st = +1) = 0.5. By assuming two symmetric detection thresholds ±θ (figure
3 lower right inset), together with symmetric white noise, it can be assured
that the distribution of sensor outputs p(yt = −1) = p(yt = +1) = 0.5 is also
symmetric, so that the mean, variance and entropy of yt remain constant even
if the noise level is changed. Hence, the expressions for I(S;Y ) and Cyy(τ) can
be slightly simplified. In particular, the autocorrelation can be reduced to the
non-normalized form Cyy(τ) ∝ 〈ytyt+τ 〉, and, furthermore, will be considered
only for lagtime τ=1.

The sensor adds the noise nt to the binary input signal st. If st+nt exceeds
the upper threshold θ, the output yt is +1, if st +nt falls below the lower
threshold −θ, output yt is −1. For st+nt ∈ [−θ,+θ], the output is chosen
randomly between the two binary values +1 and −1.

We are interested in the case of a threshold θ > 1 which exceeds the signal
amplitude, so that without the assistance of added noise the signal cannot be
detected. Adding a random noise value nt to a (say) positive input signal st can
have three possible effects. If we consider the noise to be sufficiently positive
to lift the signal beyond the upper threshold, then the success probability Q =
p(yt = +1 | st = +1) = p(yt =−1 | st =−1) will be increased. Alternatively, if
the noise happens to be strongly negative and draws the positive signal below
the lower threshold −θ then the success probability Q will be decreased. The
third possibility is that st+nt remains sub-threshold. Such cases make the signal
transmission neither better nor worse.
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It is intuitively clear that small noise levels will increase Q, but as soon as
a considerable fraction of momentary noise levels nt exceeds 2+ (θ−1), the
success probability Q will fall again. In our case it is given by Q = Q(σ) =
1
2 + 1

2

[
W ( θ+1σ )−W ( θ−1σ )

]
, where W (x)= 1

2erf( x√
2
) is a slightly rescaled error

function (see Derivation of success probability for a detailed derivation). As a
function of the noise level σ, the success probability has a well-defined maximum.

In this sensor model, the mutual information I(Y ;S) can be expressed as a
strictly increasing function of the success probability: I(Q) = 1+Q log2Q+(1−
Q) log2(1−Q) (see Derivation of mutual information for a detailed derivation).

Since both I and Q require access to the sub-threshold signal st, we turn
to the autocorrelation function Cyy of the sensor output. Since the mean y of
yt is zero and its variance constant, we can use a non-normalized version of
equation(6). Furthermore, we restrict our analytical consideration to a single
lag-time τ = 1, defining C = 〈ytyt+1〉. The modulus of this quantity, too,
can be expressed as a strictly increasing function of the success probability:
|C(Q)| = | 〈stst+1〉 | [1− 4Q(1−Q)], where 〈stst+1〉 are the input correlations
(see Derivation of output autocorrelation for a detailed derivation).

Derivation of success probability The normalized Gaussian distribution
with zero-mean and standard deviation σ is given by

g(x, σ) =
1√
2πσ

e−
1
2 (x/σ)

2

(2)

For later convenience, we define a function W (x) via

W
( z
σ

)
=

∫ z

0

g(x, σ) dx =
1

2
erf

(
1√
2

z

σ

)
, (3)

where erf(x) = 2√
π

∫ x
0
e−t

2

dt is the error function.

The success probability Q is given by

Q = p(yt=+1|st=+1) =

=
1

2
· p( −θ − 1 < nt < θ − 1 ) +

+ p( nt > θ − 1 ) (4)

The factor 1
2 accounts for the stochastic output of the unit in the case when

st+nt is sub-threshold. We can now express the probabilities as integrals over
Gaussians:
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Q =
1

2
·

(∫ θ−1

0

g(x, σ)dx+

∫ θ+1

0

g(x, σ)dx

)
+

+

(
1

2
−
∫ θ−1

0

g(x, σ)dx

)
(5)

Next we use the function W (x) defined above:

Q =
1

2
·
(
W

(
θ − 1

σ

)
+W

(
θ + 1

σ

))
+

+

(
1

2
−W

(
θ − 1

σ

))
=

=
1

2
+

[
W

(
θ + 1

σ

)
−W

(
θ − 1

σ

) ]
(6)

Derivation of mutual information The mutual information of the detector
output and the input signal is defined as

I(Y ;S) =
∑
y,s

p(y, s) log2

(
p(y, s)

p(y)p(s)

)
=

=
∑
y,s

p(y|s)p(s) log2

(
p(y|s)p(s)
p(y)p(s)

)
=

=
∑
y,s

p(y|s)(1/2) log2

(
p(y|s)(1/2)

(1/2)(1/2)

)
=

=
1

2

∑
y,s

p(y|s) log2 (2p(y|s)) . (7)

We explicitly go through all four terms:

2I(Y ;S) =
∑
y,s

p(y|s) log2 (2p(y|s)) =

= p(y=−1|s=−1) log2 (2p(y=−1|s=−1)) +

+ p(y=−1|s=+1) log2 (2p(y=−1|s=+1)) +

+ p(y=+1|s=−1) log2 (2p(y=+1|s=−1)) +

+ p(y=+1|s=+1) log2 (2p(y=+1|s=+1)) =

= Q log2 (2Q) +

+ (1−Q) log2 (2(1−Q)) +

+ (1−Q) log2 (2(1−Q)) +

+ Q log2 (2Q) . (8)
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Therefore

I(Y ;S) = Q log2 (2Q) + (1−Q) log2 (2(1−Q))

= 1 +Q log2(Q) + (1−Q) log2(1−Q). (9)

Derivation of output autocorrelations in the analytical model The
temporal correlations of the input signal can be expressed by the probability
q = p(s1 =+1, s0 =+1) in the following way:

〈st+1 st〉 = 〈s1 s0〉 =

=
∑
s0,s1

p(s1, s0) (s1 s0) =

= p(s1 =−1|s0 =−1)p(s0 =−1) [(−1)(−1)] +

+ p(s1 =−1|s0 =+1)p(s0 =+1) [(−1)(+1)] +

+ p(s1 =+1|s0 =−1)p(s0 =−1) [(+1)(−1)] +

+ p(s1 =+1|s0 =+1)p(s0 =+1) [(+1)(+1)] =

= q (1/2) [1] +

+ (1− q) (1/2) [−1] +

+ (1− q) (1/2) [−1] +

+ q (1/2) [1] = 2q − 1. (10)

The temporal correlations in the output signal are given by

Cyy(τ = 1) = 〈yt+1 yt〉 = 〈y1 y0〉 =

=
∑
y0,y1

p(y1, y0) (y1 y0). (11)

Consider for example the probability p(y1 = +1, y0 = +1). There are four
different chains of events which can produce a sequence of two successive +1’s
in the output signal:
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p(y1 =+1, y0 =+1) =

= p(y1 =+1|s1 =−1)p(s1 =−1|s0 =−1) ·
· p(y0 =+1|s0 =−1)p(s0 =−1) +

+ p(y1 =+1|s1 =−1)p(s1 =−1|s0 =+1) ·
· p(y0 =+1|s0 =+1)p(s0 =+1) +

+ p(y1 =+1|s1 =+1)p(s1 =+1|s0 =−1) ·
· p(y0 =+1|s0 =−1)p(s0 =−1) +

+ p(y1 =+1|s1 =+1)p(s1 =+1|s0 =+1) ·
· p(y0 =+1|s0 =+1)p(s0 =+1) =

= (1−Q) q (1−Q) (1/2) +

+ (1−Q) (1− q) Q (1/2) +

+ Q (1− q) (1−Q) (1/2) +

+ Q q Q (1/2) =

=
q

2
+ (2q − 1)Q(1−Q) =: A. (12)

For symmetry reasons, p(y1 = −1, y0 = −1) = p(y1 = +1, y0 = +1) = A. In
the same way, p(y1 = +1, y0 = −1) = p(y1 = −1, y0 = +1) = B.

Since
∑
y0,y1

p(y1, y0) = 1 = 2A+ 2B, it follows that B = 1
2 −A.

Knowing all four joint probabilities, we can proceed to compute the temporal
correlations in the output signal:

Cyy(τ = 1) = 〈y1 y0〉 =

= A(−1)(−1) +B(−1)(+1) +

+ B(+1)(−1) +A(+1)(+1) =

= 2A− 2B =

= (2q − 1) [ 1− 4Q(1−Q) ] =

= 〈st+1 st〉 [ 1− 4Q(1−Q) ] . (13)

Soft thresholds and non-Gaussian noise As described above, the proba-
bilistic information transmission from the signal input st to the output yt of a
sensor are defined by

p(yt|st) =

∫ +∞

−∞
p(yt|st, nt) p(nt) dnt. (14)

Here, p(yt|st, nt) characterizes the properties of a specific sensor type, and
p(nt) = pnoi(nt) is the noise distribution.
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In this work, we are considering sensors where signal and noise are com-
bined additively, so that p(yt|st, nt) can be replaced by a simpler conditional
probability that depends only on the sum xt = st + nt:

p(yt|st, nt) −→ p( yt | st+nt = xt ) = p(yt|xt). (15)

Furthermore, in the case of bipolar sensors, where yt = +1 and yt = −1
are the only possible outputs, the sensor can be characterized by a response
function:

Pres(x) = p(yt = +1|xt = x). (16)

For such additive, bipolar sensors, the success probability Q can be expressed
via the response function and the noise distribution as

Q = p(yt = +1|st = +1)

=

∫ +∞

−∞
Pres(x) p(nt = x−1) dx

=

∫ +∞

−∞
Pres(x) pnoi(x−1) dx. (17)

So far in this Supplemental, we have only considered detectors with a piece-
wise constant respose function (that is, where Pres(x < −θ) = 0 and Pres(−θ <=
x <= +θ) = 1

2 and Pres(x > +θ) = 1), and where the noise was normal dis-
tributed (see Fig.1(a)).

However, we can easily generalize our analytical model to permit arbitrary
response functions (for example, by using a smooth sigmoidal function rather
than one with hard thresholds) and non-Gaussian noise distributions. In order
to keep the symmetry p(yt = −1) = p(yt = +1) = 0.5 of the output signals
(which we have used to simplify our analytical derivation), we have to restrict
our choices to response functions with Pres(−x) = 1 − Pres(+x) and to noise
distributions with pnoi(−x) = pnoi(+x). One of the possible choices is sketched
in Fig.1(b).

The generalization of the model to smooth sigmoidal sensor responses and
non-Gaussian noise does only affect the success probability Q = Q(σ) and its
dependence on the noise amplitude σ. As long as Q(σ) has a peak at some
optimum noise level σopt, the strictly monotonous dependence of the mutual
information I and the output correlations Cyy on Q guaranty that I and Cyy
will peak at the same noise level σopt.

Different types of detectors and multiplicative noise For all bipolar
sensors (with st ∈ {−1,+1} and yt ∈ {−1,+1}) a success probability can always
be defined as

Q =

∫ +∞

−∞
p(yt = +1 | st = +1, nt) p(nt) dnt. (18)
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The general conditional probability p(yt = +1 | st = +1, nt) includes not
only detectors where signal and noise are combined additively, but allows for an
arbitrary probabilistic dependence of yt on st and nt. As long as the noise nt
is temporally un-correlated (and all variables st, nt and yt are zero-mean) Cyy
and the MI will remain monotonous functions of Q.

However, it is not guaranteed that these objective functions will always have
a maximum as a function of the noise strength σ. Consider, for example, a
sensor system where the zero-mean, temporally correlated signal st is multiplied
with zero-mean, white noise nt, and where the product xt = st ∗nt is compared
with a hard or soft sigmoidal threshold, as above. In this case, the amplitude
modulated noise xt is also un-correlated, so that Cyy = 0, no matter how the
noise strength σ is set. Thus, for such multiplicative systems, the output auto-
correlation is not in general a suitable objective function for adaptive SR. In
the context of neural systems, however, the assumptions of a symmetric bipolar
threshold and of completely un-correlated noise are not biologically plausible.

8



−θ +θ −θ +θx x

1 1
(a) (b)

Figure 1: Sketch of possible response functions (blue) and noise distributions
(green). (a) Piecewise constant Pres(x) and Gaussian pnoi(x). (b) Smooth
sigmoidal Pres(x) and leptocurtic pnoi(x)
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